

## Conversion of 3-arylphthalides into anthrones with a methylcarbonyl substituent at the C-10 position.

Adam Bieniek\*, Monika M. Bartczak and Jan Epszajm

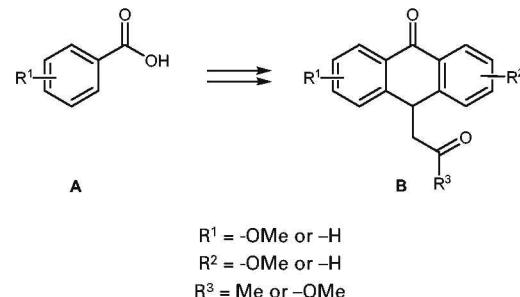
Department of Organic Chemistry, Faculty of Chemistry, University of Łódź, 90-136 Łódź, Narutowicza 68, Poland

The ortho-lithiation of a benzoic acid anilide followed by condensation with an aryl aldehyde gave a 3-arylphthalide. Reductive alkylation with 1-methoxy-1-trimethylsilyloxyethene gave a substituted aromatic carboxylic acid which was cyclised to an anthrone bearing a methoxycarbonyl methylene unit at C-10.

**Keywords:** Mukaiyama reaction, benzoic acids, acetoacetic esters, 6-methyl-1,3-dioxin-4-one, anthrones

Recently there has been increased activity directed towards the preparation of anthrones alkylated at the C-10 position. Some members of this family have been found in nature and possess a variety of biological properties.<sup>1-5</sup> For example it has been observed that anthrones bearing alkyl and carbonyl substituents at C-10 are potent inhibitors of leukotriene B<sub>4</sub> biosynthesis.<sup>1</sup> A compound with an acetic acid methyl ester connected to the C-10 carbon atom was isolated from *Rubus ulmifolius* and showed antimicrobial activity against *Staphylococcus aureus*.<sup>4</sup> Our attention has been focused on obtaining a synthetic methodology leading to anthrone derivatives in which a methylcarbonyl group is attached to the C-10 position.

Consequently, we now report an efficient strategy for the transformation of aromatic carboxylic acids **A** into the desired anthrones **B** (as is depicted in Scheme 1) in three steps, starting from the benzoic acid anilides **1**.


Recently we have reported<sup>6</sup> that a secondary carboxamide moiety provides an excellent possibility for a regioselective synthesis of 3-arylphthalides, which are the key starting materials here.

3-Arylphthalides **2** were obtained by the lithiation of benzoic acids anilides **1** using *n*-BuLi in THF<sup>7,8</sup> followed by the reaction of the resultant bis(*N*-and *C*-*ortho*)lithiated anilides with aromatic aldehydes. The *ortho*-hydroxymethylated anilides which were formed gave the corresponding phthalides **2** (Scheme 2) as a result of acid-catalysed cyclisation.

In the following step the phthalides **2** were reductively alkylated at the C-3 position by reaction with 1-methoxy-1-trimethylsilyloxyethene (**3**) or 2,2-dimethyl-6-methylene-4-trimethoxysilyloxy-4*H*-[1,3]diox-4-ene (**4**) (Fig. 1) in the presence of  $TiCl_4$  (Mukaiyama reaction conditions<sup>9,10</sup>). In the first case, the esters **5a**, **5b** were formed.<sup>7</sup> On the other hand, reaction of the phthalide **2** with compound **4** gave the corresponding dioxins **6** which on hydrolysis in boiling toluene furnished the ketones **5c**, **5d** and **5e**<sup>11</sup> (Scheme 2).

It was anticipated that treatment of the compounds **5**, with trifluoroacetic acid anhydride (TFAA) (Friedel-Crafts cyclisation<sup>12</sup>) would provide an effective route to the desired C10-substituted anthrones **7**. In practice, compounds **5** when treated with TFAA in methylene chloride produced the corresponding anthrones **7** in satisfactory yield (Scheme 2). The IR and proton NMR data indicated that the compounds which were formed were pure keto-forms. No enols were detected.

In conclusion, we have developed a novel general strategy for the preparation of C10-substituted anthrones. The procedure is useful particularly because of its efficiency, the ready availability of the starting materials and the ease of operation.



### Scheme 1

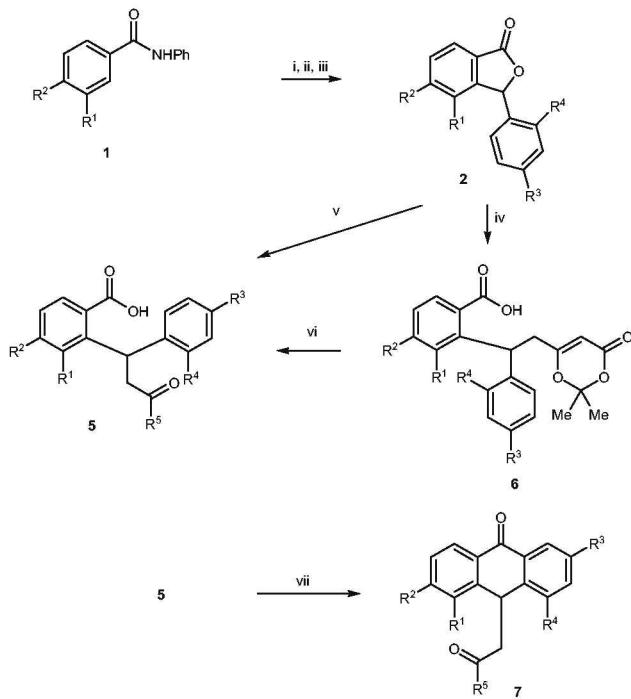


Fig. 1

## Experimental

M.p.s were determined using a Boetius hot-stage apparatus and they are uncorrected. IR spectra were recorded on a NEXUS FT-IR (KBr pellets). NMR analyses were performed on a Varian Gemini-200 (200 MHz) using TMS as an internal standard in  $\text{CDCl}_3$ ; chemical shifts are quoted in ppm. Compounds were purified until observed as single spots on TLC (Kieselgel GF-254 type 60). Tetrahydrofuran was distilled before use from sodium-benzophenone ketyl, and dichloromethane was dried over molecular sieves, 3A. Other solvents and reagents were purified according to standard procedures where appropriate. *n*-Butyllithium (*n*-BuLi) (Aldrich) was titrated before use. Reaction temperatures were recorded as bath temperatures. Elemental analysis was carried out by the Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Łódź. Compounds **5a** and **5** were obtained by known methods.<sup>7,11</sup>

**4-Methoxy-2-[1-(2-methoxyphenyl)-3-oxobutyl]-benzoic Acid (5d):** A solution of 0.01 mol of acid **6** in 20 cm<sup>3</sup> of toluene and 10 cm<sup>3</sup> of water was heated to boiling for 12 h. The mixture was extracted with chloroform (3 × 20 cm<sup>3</sup>). Then the combined extracts were evaporated to dryness, crude products **5d** was purified by crystallisation.


Yield 68%; M.p. 139–140°C (white needles from diisopropyl ether/ethyl acetate/hexane 6:2:1); IR (KBr): 1709, 1684,  $\text{cm}^{-1}$  ( $\text{C}=\text{O}$ );  $^1\text{H}$  NMR ( $\text{CDCl}_3$ ): 7.89–7.85 (m, 1H, ArH), 7.26–7.19 (m, 2H, ArH), 6.80–6.66 (m, 4H, ArH), 5.72 (t, 1H,  $J$  = 7.0 Hz, CH), 3.74 (s, 3H, OMe), 3.71 (s, 3H, OMe), 3.36 (dd, 1H,  $J_1$  = 8.7 Hz,  $J_2$  = 17.0 Hz, CH<sub>2</sub>), 3.15 (dd, 1H,  $J_1$  = 7.1 Hz,  $J_2$  = 17.0 Hz, CH<sub>2</sub>), 2.19 (s, 3H, Me);  $^{13}\text{C}$  NMR ( $\text{CDCl}_3$ ): 209.3, 170.7, 162.2, 156.8, 146.3, 133.1, 130.9, 127.9, 126.5, 120.3, 114.6, 110.6, 110.5, 55.2, 49.1, 35.3, 29.6. Anal. For  $\text{C}_{15}\text{H}_{20}\text{O}_5$ : C, 69.50; H, 6.09. Found: C, 69.60; H, 6.01%.

*Cyclisation of compounds 5 using trifluoroacetic acid anhydride; general procedure*

To the stirred solution of acids **5** (0.01 mol) in 10 cm<sup>3</sup> of CH<sub>2</sub>Cl<sub>2</sub> was added of TFAA at 0 °C. The mixture was stirred for 10–72 h at room temperature. Next, the solvent was evaporated *in vacuo* and crude

---

\* Correspondent. E-mail: bieniek@uni.lodz.pl



**a**,  $R^1 = R^4 = -OMe$ ;  $R^2 = R^3 = -H$ ;  $R^5 = -OMe$ ;  
**b**,  $R^1 = R^4 = -H$ ;  $R^2 = R^3 = -OMe$ ;  $R^5 = -OMe$ ;  
**c**,  $R^1 = R^2 = R^4 = -H$ ;  $R^3 = -OMe$ ;  $R^5 = -Me$ ;  
**d**,  $R^1 = R^3 = -H$ ;  $R^2 = R^4 = -OMe$ ;  $R^5 = -Me$ ;  
**e**,  $R^1 = R^3 = -OMe$ ;  $R^2 = R^4 = -H$ ;  $R^5 = -Me$ ;

Scheme 2

| Step | Reagent                | Molar ratios | Temperature  | Reaction time |
|------|------------------------|--------------|--------------|---------------|
| i    | n-BuLi in THF/hexane   | 1:2.2        | -78°C → 0°C  | 1 h           |
| ii   | Ar-CHO                 | 1:1.2        | -78°C → 20°C | 1 h           |
| iii  | HCl (1:1)              | excess       |              |               |
| iv-1 | 4 in $CH_2Cl_2/TiCl_4$ | 1:1.1        | -78°C        | 7 h           |
| iv-2 | $KHSO_4$ 5% aq         | excess       | r.t.         |               |
| v-1  | 3 in $CH_2Cl_2/TiCl_4$ | 1:3          | 0°C → r.t.   | 4 h           |
| v-2  | $KHSO_4$ 5% aq         | excess       | r.t.         |               |
| vi   | $H_2O/toluene$         |              | reflux       |               |
| vii  | TFAA/0°C               |              | r.t.         | 10–72 h       |

products were purified by preparative TLC (chloroform/acetone 7:3), and the solid residue washed the mixture benzene/hexane 1:1.

*Methyl 2-(1,8-dimethoxy-10-oxo-9,10-dihydroanthracen-9-yl)acetate* (**7a**): Reaction time: 24 h. Yield 68%; m.p. 198–200°C (needles from benzene/hexane 1:1); IR (KBr): 1733, 1659  $\text{cm}^{-1}$  (C=O);  $^1\text{H}$  NMR ( $CDCl_3$ ) 7.95–7.80 (m, 2H, ArH), 7.51–7.34 (m, 2H, ArH), 7.18–7.05 (m, 2H, ArH), 4.99 (m, 1H, CH), 3.97 (s, 6H,  $OCH_3$ ), 3.27 (s, 3H,  $OCH_3$ ), 3.07 (d, 2H,  $J$ =5.0 Hz,  $CH_2$ );  $^{13}\text{C}$  NMR ( $CDCl_3$ ) 171.3, 156.1, 134.1, 131.8, 127.8, 119.0, 113.9, 102.9, 97.6, 55.7, 51.1, 38.3, 29.1. Anal. Calcd for  $C_{19}H_{18}O_5$ : C, 69.9; H, 5.6. Found: C, 69.8; H, 5.7%.

*Methyl 2-(2-Dimethoxy-10-oxo-9,10-dihydroanthracen-9-yl)acetate* (**7b**): Reaction time: 24 h. Yield 46%; m.p. 264–266°C (needles from benzene/hexane 1:1); IR (KBr): 1733, 1659  $\text{cm}^{-1}$  (C=O);  $^1\text{H}$  NMR ( $CDCl_3$ ) 7.88–7.85 (m, 2H, ArH), 7.45–7.37 (m, 2H, ArH), 7.13–7.09 (m, 2H, ArH), 4.97 (m, 1H, CH), 3.95 (s, 6H,  $OCH_3$ ), 3.26 (s, 3H,  $OCH_3$ ), 3.06 (d, 2H,  $J$ =4.7 Hz,  $CH_2$ );  $^{13}\text{C}$  NMR ( $CDCl_3$ ) 185.2, 171.3, 156.1, 134.1, 131.8, 127.8, 119.0, 113.9, 102.9, 97.6, 55.7, 51.1, 38.2, 29.0. Anal. Calcd for  $C_{19}H_{18}O_5$ : C, 69.9; H, 5.5. Found: C, 69.8; H, 5.4%.

*2-Methoxy-10-(2-oxopropyl)anthracen-9(10H)-one* (**7c**): Reaction time: 24 h. Yield 52%; m.p. 202–203°C (needles from benzene/hexane 1:1); IR (KBr): 1717, 1675  $\text{cm}^{-1}$  (C=O);  $^1\text{H}$  NMR ( $CDCl_3$ ) 8.29–8.25

(m, 2H, ArH), 7.79–7.73 (m, 3H, ArH) 7.38–7.29 (m, 2H, ArH), 4.85 (m, 1H, CH), 3.99 (s, 3H,  $OCH_3$ ), 3.82 (dd, 2H,  $J_1$ =9.2 Hz,  $J_2$ =18.6 Hz,  $CH_2$ ), 2.1 (s, 3H,  $CH_3$ );  $^{13}\text{C}$  NMR ( $CDCl_3$ ) 219.8, 178.4, 134.2, 133.7, 129.8, 127.2, 121.2, 110.0, 97.1, 95.6, 56.0, 55.5, 52.7, 36.3, 32.1. Anal. Calcd for  $C_{18}H_{16}O_3$ : C, 76.6; H, 6.4. Found: C, 76.8, H, 6.65%.

*3,5-Dimethoxy-10-(2-oxopropyl)anthracen-9(10H)-one* (**7d**): Reaction time: 72 h. Yield 69%; m.p. 168–170°C (needles from benzene/hexane 1:1); IR (KBr): 1716, 1657  $\text{cm}^{-1}$  (C=O);  $^1\text{H}$  NMR ( $CDCl_3$ ) 7.93–7.89 (m, 1H, ArH), 7.73–7.71 (m, 1H, ArH) 7.49–7.38 (m, 2H, ArH), 7.15–7.09 (m, 2H, ArH), 5.01 (m, 1H, CH), 3.92 (s, 3H,  $OCH_3$ ), 3.89 (s, 3H,  $OCH_3$ ), 2.94 (dd, 1H,  $J_1$ =3.0 Hz,  $J_2$ =16.8 Hz,  $CH_2$ ), 2.68 (dd, 1H,  $J_1$ =7.4 Hz,  $J_2$ =16.6 Hz,  $CH_2$ ), 2.01 (s, 3H,  $CH_3$ );  $^{13}\text{C}$  NMR ( $CDCl_3$ ) 206.4, 184.5, 158.7, 155.8, 137.9, 133.7, 133.0, 132.4, 129.8, 127.7, 121.5, 119.4, 114.1, 109.1, 55.7, 55.5, 52.8, 32.0, 30.5. Anal. Calcd for  $C_{19}H_{18}O_4$ : C, 73.5; H, 5.8. Found: C, 73.4; H, 5.77%.

*2,5-Dimethoxy-10-(2-oxopropyl)anthracen-9(10H)-one* (**7e**): Reaction time: 72 h. Yield 75%; m.p. 124–26°C (needles from benzene/hexane 1:1); IR (KBr): 1716, 1657  $\text{cm}^{-1}$  (C=O);  $^1\text{H}$  NMR ( $CDCl_3$ ) 7.92–7.88 (m, 1H, ArH), 7.72–7.71 (m, 1H, ArH) 7.49–7.42 (m, 2H, ArH), 7.13–7.09 (m, 2H, ArH), 4.99 (m, 1H, CH), 3.92 (s, 3H,  $OCH_3$ ), 3.88 (s, 3H,  $OCH_3$ ), 2.94 (dd, 1H,  $J_1$ =3.2 Hz,  $J_2$ =16.7 Hz,

CH<sub>2</sub>), 2.68 (dd, 1H,  $J_1$  = 7.6 Hz,  $J_2$  = 16.7 Hz, CH<sub>2</sub>), 2.02 (s, 3H, CH<sub>3</sub>); <sup>13</sup>C NMR (CDCl<sub>3</sub>) 206.4, 184.5, 158.6, 155.8, 137.9, 133.7, 132.9, 132.4, 129.7, 127.7, 121.5, 119.4, 114.1, 109.1, 55.7, 55.5, 52.8, 32.0, 30.6. Anal. Calcd for C<sub>19</sub>H<sub>18</sub>O<sub>4</sub>: C, 73.5; H, 5.8. Found: C, 73.5; H, 5.8%.

This work was supported by Grant-in-Aid for Research from University of Łódź, and is gratefully acknowledged.

Received 12 December 2008; accepted 28 January 2009

Paper 08/0344 doi: 10.3184/030823409X416956

Published online: 6 April 2009

## References

- 1 K. Müller, K. Bren and H. Reindl, *Eur. J. Med. Chem.*, 2001, **36**, 179.
- 2 K. Müller, R. Altman and H. Prinz, *Eur. J. Med. Chem.*, 2001, **36**, 569.
- 3 K. Müller, R. Altman and H. Prinz, *Eur. J. Med. Chem.*, 2002, **37**, 83.
- 4 G. Flaminii, S. Catalano, Ch. Caponi, L. Panizzi and J. Morelli, *Phytochemistry*, 2002, **59**, 873.
- 5 Y. Koyama, R. Yamaguchi and K. Suzuki, *Angew. Chem. Int. Ed.*, 2008, **47**, 1084.
- 6 J. Epszajn, A. Jóźwiak and A.K. Szczęśniak, *Curr. Org. Chem.*, 2006, **10**, 1817.
- 7 J. Epszajn, A. Bicnick, J.K. Kowalska and K.K. Kulikiewicz, *Synthesis*, 2000, **11**, 1603.
- 8 A. Bicnick, J. Epszajn and K.K. Kulikiewicz, *Monatsh. Chem.*, 2004, **135**, 69.
- 9 T. Mukaiyama, K. Banno and K. Narasaka, *J. Am. Chem. Soc.*, 1974, **96**, 7503.
- 10 T. Mukaiyama, *Angew. Chem. Int. Ed.*, 1977, **16**, 817.
- 11 A. Bicnick, K.K. Kulikiewicz and M.M. Bartczak, *Synth. Commun.*, 2006, **36**, 3249.
- 12 M.B. Smith, J. March, *March's advanced organic chemistry; reactions, mechanisms, and structure*, 5th edn. John Wiley & Sons, Inc. New York, 2001, pp. 712-714.